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ABSTRACT 

Three examples of an infinite family of semigroups are constructed such that 
there is no homomorphism from one member of the family to another member. 
The third example is intimately related to a number-theoretic theorem of 
C. L. Siegel. 

A family ~" of  semigroups is exclusive if  there is no homomorphism from any 
member of  ~" to any other member of  ~-. Some finite exclusive families were 
constructed by Tamura [4] where the concept was introduced. The present note 
exhibits various infinite exclusive families of semigroups. The first example con- 
sists of  c (continuum) subsemigroups of the additive group of  lattice points in the 
plane; the second example consists of  2 c subsemigroups of  the additive group 
of  real numbers; the third example consists of c subsemigroups of the multipli- 
cative group of  positive rational numbers. 

Let m be a negative irrational number and S,, = {(i , j )[ j  > ira, i and j integers}. 
Make Sm into a semigroup by defining (i , j)  + ( i ' , j ' )  to be (i + i', j +j ' ) .  Observe 
that if u and v are elements of  S., then precisely one of  the equations, u + x = v 
and v + x = u, has a solution x in Sin. If  we haveu + x = v let us write v > u. 

Consider now two negative irrational numbers m and m' and their corresponding 
semigroups S,, and Sin,. If f :Sm --~ S,., is a homorphism and u, v e S,., u > v, then 
u = v + x, f ( u )  =f (v )  + f ( x )  and f ( u )  > f (v) .  Thus f is one-to-one. 

Let f ( 1 , 0 ) = a  and f ( 0 , 1 ) = b .  Then for positive nonnegative integers x t 

and x2, (xt, x2)e  S,., we have 

f(Xl,X2) =xxa  +x2b. 

From this it follows easily that for any point (xl,  x2)e  S,. we have 

f ( x t , x 2 )  =xla +x2b. 

Thus f is the restriction to S,. of  a linear transformation T:  R 2 --'. R 2 of  the 
whole Euclidean plane. The line y = m x  partitions the lattice points (other than 

0, 0) into two sets S., and S*. It is not hard to show that T(S,.) n S*, = 0. From 
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this it follows that T carries the line y = mx  into the line y = m'x .  Hence T(1, m) 
is on the line y = re'x, that is, a + mb is on the line y = m'x.  Letting a =(a t ,a2)  

and b = (bt, b2) we have 

o r  

a2 + rob2 = m'(a t  + mbl)  

m'  = a2 + rob2 
al + mbt  " 

This proves 

THEOREM 1. There is a homomorphism f rom Sm to Sin, i f  and only i f  there 

are integers at ,  bt, a2, b2 such that 

m'  = a2 + rob2 
ax + mbt  " 

From this theorem we deduce the existence of a continuum of semigroups such 
that there is no homomorphism from any one of them to any other. To do this, 
we introduce a relation among the negative irrational numbers, setting m' ,-, m 
if and only iftbere are integers al, a2, bt, b2 such that m'  = (a2 + mb2)/(al + rob1). 
This equivalence relation partitions the set of negative irrational numbers into sets, 
each of which is denumerable. Hence there are a continuum of sets in the partition. 
Choose a representative, m, from each class; the family of corresponding semi- 
groups Sm has the property that there is no homomorphism from one of them 
to another. 

Our next example of an exclusive family of semigroups will be constructed 
within the additive structure of real numbers. It depends basically on the well- 
known Lemma 2 below, which may be proved with the aid of Lemma 1. 

LEMMA 1. Let R + be the set of  positive real numbers and f :  R + ~ R  + 

satisfy the functional  equation f ( x  + y) = f ( x )  +f(y).  Then there is a number 
k ~ R  + such that f ( x )  = kx  for  all x in R +. 

L E M ~  2. Let A c R + be dense in R +, closed under addition, and satisfy 
the condition: i f  a l , a z E A ,  al < a2, then there is an element a e A  such that 

a t + a  =a2. Let B c R + and f :  A ~ B  satisfy the functional  equation f ( x  + y )  

=f(x) +f(y). Then there is a number k ~ R + such that f ( a )  = ka for  all a ~ A. 

LEMMA 3. I f  F t and F 2 are two subfields of  the real numbers, then there is 

a function f : F l r ~ R  + - ~ F 2 c ~ R  + that satisfies the equation f ( x + y ) =  

f(x)+ f(y) i f  and only i f  F t is a subfield o f F  2. 

Proof. Observe that Ft and F2 are dense in R since both contain the set of 
rational numbers. By Lemma 2, there is an element k e R + such that f ( x )  = kx  
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for a l lxeF~ ~ R  +. In particular f(1) = k  • 1 --k;  thus k e F  2. If a~F~ ~ R  +, 
f(a) = k a e F 2 N R + ;  thus a e F 2 ~ R  + and F 1 n R  + c - F  2 It follows that 
F1 ---F2 and the proof is done. 

THEOREM 2. There is an exclusive family ~', consisting of 2 c subsemigroups 
of the positive real numbers under addition. 

Proof. Let C be a maximal set of algebraically independent real numbers. 
The cardinality of C is c. Construct a family G = {X~} of pairwise incomparable 
subsets of C such that the cardinality of G is 2L (For instance partition C into c 
denumerable sets Y1, Y2 "'" and let G be the images of the set of functions, 
Y1 x Y2 x ...). Each X~ generates a field F(X~). For ~ # fl, X~ is incomparable 
with Xp and X~ u Xp consists of algebraically independent elements. Thus any 
element in X~ - Xa is not in F(XB). Thus F(X~) ¢: F(Xp); similarly F(Xp) ¢= F(X~). 
By Lemma 3, {F(X~)c~R +} is an exclusive family of subsemigroups of R ÷ 
under addition. This ends the proof. 

Since R ÷ under addition is isomorphic to the set of real numbers greater than 1 
under multiplication, we have the following result, equivalent to Lemma 2, which 
will be of use in considering semigroups of rational numbers under multiplication. 

L ~ A 4 .  Let A c ( 1 ,  o o ) = { x j x >  l} be dense in (1, oo), closed under 
multiplication, and satisfy the condition: if al, aze A, at < a2, then there is an 
element a e A  such that ala =a2. Let B _c(1, oo) and f : A ~ B  satisfy the 
condition f(xy)  =f(x)f(y).  Then there is a number k e (1, oo) such that f(a) = a k 
for all a e A. 

The final construction depends on the following result of C. L. Siegel, quoted 
in [1] page 455: If Pl, P2, and Ps are distinct primes, and p~, P2", and Pa" are 
rational then r is an integer. (See [2], page 9, or !3] page 189 for material relating 
to this result.) 

If P is a set of primes let S(P) denote the multiplicative semigroup of rational 
numbers greater than 1 that are expressible as the quotient of integers whose 
prime factorization involves only primes in P. 

THEOREM 3. Let P and Q be sets of primes such that P has at least three 
elements. Then there is a multiplicative homomorphism from S(P) to S(Q) 
if and only if P c Q. 

Proof. Assume that f :  S(P) -~ S(Q) is such a homomorphism. S(P) is dense in 
(1, oo). By Lemma 4, there is a real number r such that f (x)  = x" for all x e S(P). 
By Siegel's theorem r is an integer. Thus P ___ Q. 

Theorem 3 can be used to construct an exclusive family of semigroups of  
cardinality c within the multiplicative rational numbers. Whether "three" can be 
replaced by " two"  in Theorem3 is not known. In 1'I], p. 449 we have the related 
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question concerning distinct primes, p and q: " . . .  is it true that pX and qX are 
both rationals only if x is an integer?" 

The constructions used in Theorems 1 and 3 are related. Let P = {Pl, P2} and 

Q = {ql,q2). Then p~lp,~2 > 1 if and only if nl Inpl  + n21np2 > 0; that is, if and 
only if (hi, n2) e Sm where m = - In pl/ln P2. Similarly S(Q) corresponds to 
S,,., where m' = - In ql/ln q2. (By the fundamental theorem of  arithmetic, m and 
m' are irrational.) If  we knew that for these m and m', m ,~ m', then Theorem 1 
would imply that there is no homomorphism from S(P) to S(Q). 

Note also that Sm can be imbedded in the multiplicative semigroup (1, ~ )  
./- ~rn by mapping (i,j) into e . Thus Theorem 1 could be phrased in terms of  the real 

numbers under multiplication. 

I am indebted to Ernst Straus for calling my attention to Siegel's theorem, and 
to Dov Tamari for several improvements in the exposition. 
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